Introduction

Word stress as a linguistic phenomenon is governed by *language-specific rules*. For example, English (like many other languages) prefers alternating binary rhythm: (‘....´) (avoiding two adjacent stressed syllables) and phonetic (avoiding two adjacent unstressed syllables).

- Can a finite-state automaton that describes these rules be induced from examples?

Method

- Data from Heinz (2009)
 - 106 transducers accurately modeling 106 different stress grammars
- Transducers generate sequences (‘words’) consisting of ‘w’, ‘s’ (syllables), where
 - w= syllable weight (7=1–4), and
 - s= stress level (0=0–2)
- Generated strings are input to learner trying to induce original grammar
- Generalization over input occurs based on similar context

Experimental manipulation

- How many syllables should left and right context be (k and l respectively)?
- Is the generated finite-state machine equivalent to the original transducer?

Architecture

Generator

1. Generate sequences breadth-first
 - Minimal number of sequences to cover all paths
 - Measured in either sequences (‘w’) or individual symbols (‘s’)
2. Generate at least minimal number of sequences plus variable surplus in range: 0, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500

Learner

1. Build prefix tree of example sequences
2. Identify partitioning
 - Collapse nodes in prefix tree that share a certain context (left and right context encoded in the parameters k and l respectively)
 - Use Myhill-Nerode names (Nerode, 1957, 1958) to quickly identify merging context

Results — logistic regression

Dependent variable: learned?

<table>
<thead>
<tr>
<th></th>
<th>B (SE)</th>
<th>Lower Odds Ratio Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept***</td>
<td>3.47 (1.043)</td>
<td>1.448 1.000</td>
</tr>
<tr>
<td>Complexityw***</td>
<td>-0.488 (0.111)</td>
<td>0.614 0.826</td>
</tr>
<tr>
<td>K***</td>
<td>-0.189 (0.060)</td>
<td>0.826 0.838</td>
</tr>
<tr>
<td>Complexityw***</td>
<td>0.047 (0.005)</td>
<td>1.048 1.058</td>
</tr>
</tbody>
</table>

WITH OPTIMAL SETTINGS: k = 2, l = 0

<table>
<thead>
<tr>
<th></th>
<th>B (SE)</th>
<th>Lower Odds Ratio Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept***</td>
<td>1.297 (0.184)</td>
<td>3.660 1.000</td>
</tr>
<tr>
<td>Complexityw***</td>
<td>-0.842 (0.061)</td>
<td>0.431 0.486</td>
</tr>
<tr>
<td>Complexityw***</td>
<td>0.215 (0.020)</td>
<td>1.240 1.290</td>
</tr>
<tr>
<td>Surplusw***</td>
<td>0.087 (0.001)</td>
<td>1.007 1.008</td>
</tr>
<tr>
<td>Surplusw***</td>
<td>0.000 (0.000)</td>
<td>1.000 1.000</td>
</tr>
</tbody>
</table>

Effect of k and l on learnability

The effect of k and l on learnability is shown in the graph. The optimal settings are determined based on maximizing the likelihood of learning the stress patterns.

Effect of available data on learnability

The graph shows the relationship between the number of available data points and the likelihood of learning the stress patterns. The model shows a positive correlation, indicating that more data leads to higher learnability.

Conclusion

- Learning is moderately successful (48.30% of languages)
- Failures are explained well by complexity of a language’s stress pattern
- There is also a significant effect of the amount of data fed to the learner; but effect size is small

References

